一般社団法人ターボ機械協会 第93回 松江講演会

主催:(一社)ターボ機械協会 共催:松江工業高等専門学校、日本機械学会

日程:2025年12月1日(月)9:40~18:00 会場:島根県民会館3F

参加費(税込): 講演会(一般) 9,900円 講演会(学生) 4,400円

 懇親会(一般)
 6,600円
 懇親会(学生)
 3,300円

総合参加費(一般) 16,500円 総合参加費(学生) 7,700円

【プログラム全体】

9:00			第3室:3F305会議室	第4室:3F307会議室	第5室: 3 F 3 O 8会議室	
	受付開始 9:00 (開場 9:00~) 島根県民会館 3Fフロア					
9:40						
10:00	【OS1:海洋エネルギー利用技術①】	【OS2:風力エネルギー利用技術①】		【GS : ポンプ・軸受】	【OS4:水力発電の可能性①】	
10:20	【031./毎/十二个ルイーでリカリ又がりむ】	1032 .) 塩(ノ)エイ)レイ 一 本り/田) 又 () 1		【は、ハンノ・軸文】	[034. 小刀光电05]配任①]	
10:40						
11:00			休憩			
11:10						
11:30	【OS1:海洋エネルギー利用技術②】	【OS2:風力エネルギー利用技術②】	 【GS : タービン・翼列】	【OS3: ターボポンプの新規開発と	【OS4:水力発電の可能性②】	
11:50		10011/2001		それを支える技術①】		
12:10						
12:30			昼食			
13:50				【OS3:ターボポンプの新規開発と		
14:10	【OS1:海洋エネルギー利用技術③】	【OS2:風力エネルギー利用技術③】	【GS : ファン・空力音①】	それを支える技術②】	【OS4:水力発電の可能性③】	
14:30						
14:50		休憩	休憩	休憩		
15:10						
15:30		【GS:キャビテーション・吸込・バルブ】	【GS : ファン・空力音②】	【OS3:ターボポンプの新規開発と		
15:50				それを支える技術③】		
16:10						
15.10	第1室:3F 大会議室					
	【特別誦典1】 題曰:松江堀川とホンノの「こ稼」、					
[2	【特別講演 2 】 題目:静寂のエンジン 〜グライダーが語る流体との共生〜、 講演者:梅谷 堅三 氏(NPO法人いわみ風の丘飛行クラブ 代表理事(元松江高専事務職員)) 司会:実行委員長 高尾 学(松江工業高等専門学校)					
17:40	・0 【表彰式】「若手功労表彰 小宮功労賞」「若手優秀講演賞」 表彰:会長 宮川 和芳(早稲田大学)、 来賓:小宮 英明 様(ミツヤ送風機㈱ 代表取締役会長)、 司会:副会長 渡邉 啓悦(荏原製作所)					

1	8	:	2	C
2	n		2	٢

第1室:3F 大会議室

(敬称略) ※一般発表者、◆若手講演者

(敬称略)	※一般発表者、◆若手講演者 【1題の講演15分、質疑応答5分】_				
時刻	講演 番号	題目	概要	講演者/共著者	
	【OS1:海洋エネルギー利用技術①】 オーガナイザー・司会: 木上 洋一(佐賀大)				
9:40	A-01	波力発電用直線翼垂直軸タービンの 性能に及ぼす乱流促進体形状の影響	波力発電用直線翼垂直軸タービンの性能 に及ぼす乱流促進体形状の影響をタービン性能試験により調査した。	◆坂口優希、早水庸隆、益田卓哉(米子高専)、高尾学(松江高専)、木上洋一、鶴若菜、瀬戸口俊明(佐賀大)	
10:00	A-02	CFDによる波力発電用衝動タービンの性能予測	波力発電用衝動タービンの実験結果と比較しつつ、CFDによる解析精度と詳細な流れ場の解明を行っている。	※鈴木正己(琉球大)、高尾学(松江高専)、 天久和正(琉球大)	
10:20			振動水柱型波力発電装置の一次変換部の断面積比を変化させ、固有周期・共振 周期に及ぼす影響を明らかにした。	◆金井文泳、足立敦思、飯野光政(足利大)	
10:40	A-04	波力発電用二重反転セイルウィング タービンに関する研究	波力発電用二重反転セイルウィングタービンの性能に及ぼす翼列形状の影響を実験的に調査した。	◆西村純太、山本樹、高尾学、奥原真哉 (松江高専)	
		: 海洋エネルギー利用技術②】 -イザー : 木上 洋一(佐賀大)	司会:早水 庸隆(米子高	-	
11:10	A-05	往復流型二重反転衝動タービンの性 能に及ぼす案内羽根形状の影響		◆井上海瑠、高尾学、奥原真哉(松江高 専)、M. M. Ashraful ALAM(大産大)、木 上洋一(佐賀大)	
11:30	A-06	エンドプレートを有する一方向衝動型 タービンの性能解析	ロータ翼端にエンドプレートを有する一方向 衝動型タービンの性能をCFD解析により調 査する。	◆山下真怜、吉野慶市、奥原真哉、高尾学 (松江高専)	
11:50	A-07	波力発電用二重反転衝動タービンの 性能に及ぼすエンドプレートの影響	中間羽根付き往復流型二重反転衝動 タービンの性能に及ぼすエンドプレートの影響をCFD解析により調査する。	◆白石翔大、高尾学、奥原真哉(松江高 専)、木上洋一(佐賀大)、 M.M.AshrafulAlam(大産大)、 BrunoPereirasGarcia(オビエド大)	
12:10	A-08	ロバスト性を有するウェルズタービンの 開発	特殊な形状を持つOWC型波力発電用 ウェルズタービンの性能を準定常解析により 評価する。	◆飯塚祐貴、高尾学、佐々木翔平、奥原真哉(松江高専)	
		: 海洋エネルギー利用技術③】 -イザー : 木上 洋一(佐賀大)	司会:鶴 若菜(佐賀大)		
13:50	A-09		潮流発電用の往復流型ダクト付きタービン について、ダクト最大直径がダクト効率に及 ぼす影響を報告する。	※木上洋一、鶴若菜、村上天元、山下未羽、塩見憲正(佐賀大)、高尾学(松江高専)	
14:10	A-10	竹材カスケード利用のための下掛け水 車式表層潮流回生機構用浮体水 路への湧昇流誘導構造の艤装	離島で繁殖が課題となっている竹を多用した浮体水路式表層潮流エネルギー回生装置の小規模利用を検討する。	※森耕太郎、長井弘志(弓削商船高専)、高藤圭一郎(横国大)、朴鍾徳(大島商船高専)、福間眞澄(松江高専)、及川栄作(呉高専)、雷康斌(広島商船高専)、筒井壽博(弓削商船高専)	
14:30	A-11	往復流型衝動タービンを用いた波動 ポンプの研究(動翼角の影響)	影響を報告する。	◆熊谷隼眞、木上洋一、渕上隆道、塩見憲正(佐賀大)、前田英明(九州トリシマ)、高尾学(松江高専)	
14:50	A-12	往復流対応翼端連結潮流発電用 タービンの開発	水平軸潮流発電用タービンの新規開発 と、実験および数値計算による性能評価 結果について報告する。	※鶴若菜、古野和彦、武田悠人、細貝輝、村上天元、木上洋一、塩見憲正(佐賀大)	
16,40					

16:40	【特別講演1】 題 目: 松江堀川とポンプの「ご縁」 講演者: 和泉 孝嗣 氏 (島根県土木部河川課 課長補佐) 【特別講演2】 題 目: 静寂のエンジン 〜グライダーが語る流体との共生〜 講演者: 梅谷 堅三 氏 (NPO法人いわみ風の丘飛行クラブ 代表理事 (元松江高専事) 司 会: 実行委員長 高尾 学 (松江工業高等専門学校)	務職員))
17:40	【表彰式】 「若手功労表彰 小宮功労賞」「若手優秀講演賞」 表彰: 会長 宮川 和芳(早稲田大学) 来賓:小宮 英明 様(ミツヤ送風機㈱ 代司会: 副会長 渡邉 啓悦(荏原製作所)	表取締役会長)

第2室: 3F 303会議室

(敬称略) ※一般発表者、◆若手講演者

(敬称略)					
時刻	講演 番号	題目	概要	講演者/共著者	
		: 風力エネルギー利用技術①】 -イザー : 原 豊 (鳥取大)	司会:鎌田 泰成(三重大)		
9:40	B-01	多相変圧器を用いた小型風力発電 システムの発電性能向上の検討	多相変圧器に導入し、小型風力発電性 能を向上するシステムの提案に関して検討 したので報告する。	※雪田和人、後藤卓弥(愛工大)、加藤彰訓 (河村電器産業)、田中蒼(NTTアノードエナ ジー)	
10:00	B-02	浮遊軸型風車における風車構造物 が回転トルクに及ぼす影響	浮遊軸型風車の風車翼を支えるアームが傾斜時に回転トルクを発生させ発電性能に寄与する可能性を示した。	※髙野晋、遠藤誉英(東京電力HD)	
10:20	B-03	ストール制御風車の出力性能のベイ ズ最適化とその空力騒音の予測	ベイズ最適化でストール制御風車を創出することの実現可能性とその空力騒音を予測した結果を示す。	※佐々木壮一、坂本晃太郎(長崎大)	
10:40	B-04	20MW級マルチパス風車に関する概念検討	日本版浮体式風車の開発として20MW 級マルチパス風車に関する概念検討および 得失評価を実施した。	※吉水勇人、山﨑雅直、滝野晶平(東京電 カHD)、Mohamed FEKRY(Zagazig Univ.)、吉田茂雄(佐賀大/九大)	
	COS2	: 風力エネルギー利用技術②】			
	オーガナ	イザー:原 豊(鳥取大)	司会:佐々木 壮一(長崎大)		
11:10		受風部の円柱後流にプレートを設置 した磁歪式風振動発電デバイスの性 能に関する研究	風振動発電デバイスの受風部後流にプレートを設置した場合のプレート長が発電性能に与える影響を調査した。	◆三谷東生、木綿隆弘、池田舜祐、 Mohamed Heragy(金沢大)	
11:30	B-06	球形ツイストサボニウス風車の全方位 風向特性の風洞試験	球形ツイストサボニウスタービンの全方位の 風向に対する回転性能を風洞試験により 測定した。	村井祐一、景義涵、朴炫珍(北大)、大友衆示(東京農工大)	
11:50	B-07	垂直軸風車の可動アーム式空力ブレーキの3D-CFD解析	垂直軸風車用の過回転抑制機構としての 可動アーム式空力ブレーキの三次元数値 流体力学解析を行った。	◆毛利優希、中埜陽湧、大石侑希、原豊 (鳥取大)	
12:10	B-08	三次元CFDから得られた平均速度 データを用いた実験用ミニチュア VAWTクラスターのロータ性能の予測	三次元CFDから得た二次元速度データを 用いて、実験用垂直軸風車の3並列レイア ウトの特性予測を行った。	※モラル モハメッド シャミム、稲井寛人、原豊 (鳥取大)、上代良文(香川高専)、朱洪忠 (九大)	
	【OS2:風力エネルギー利用技術③】				
		-イザー:原 豊(鳥取大)	司会:木綿 隆弘(金沢大)		
13:50	B-09	ダンパー付き空力ブレーキを用いたバタ フライ風車模型の風洞実験	垂直軸風車用の可動アーム式空カブレー キの特性を模型風車によって調べ、ダンパー の効果を明らかにした。	◆稲井寛人、原豊、木村蒼一郎(鳥取大)、 西井創志(九大)	
14:10	B-10	インライン式二重反転プロペラ風車の ソリディティが内部流れに及ぼす影響	配管内に設置した二重反転プロペラ風車 の内部流れに関する数値解析結果と発電 試験結果を報告する。	◆太田直希、辻直樹、細谷拓司、重光亨 (徳大)	
14:30	B-11	直線翼垂直軸風車の軸径による空 力特性の風洞実験	直線翼垂直時風車の軸径が、発電出力 および流れ場に与える影響を風洞実験を 用いて検討した。	◆日比健太郎、鎌田泰成、笹古凌我、前田 太佳夫(三重大)、西脇颯人、柏倉洋平(日 本精工)	
	司会:	キャビテーション・吸込・バルブ】 川崎 聡(JAXA)			
15:10	B-12	自由表面を持つ水槽における空気吸 込現象の動画解析実験	自由表面を持つ水槽において、LLS法を用いた実験に取り組み、空気吸込現象の分布、発生頻度などを調べた。	◆河野幹太、平田勝哉(同大)	
15:30	B-13	サブマージド・スリーブ・バルブ減勢水 槽の水理特性	サブマージド・スリーブ・バルブ起動時の減勢 水槽の波高を測定し、水槽内の周波数特 性を調査した。	◆市川勇太、藤原七海(同大)、松原圭佑、 次井史哉(栗本鐵工所)、米澤宏一、佐藤隆 宏(電中研)、平田勝哉(同大)	
15:50	B-14	多孔ケージ弁の単純可視化モデルを 用いたキャビテーションの観察	多孔ケージ弁の単純モデルでキャビテーションを観察し、ペイント法による壊食試験結果との関係を検討した。	◆大熊和翔、小林暖香、高峯大輝、渡邉聡 (九大)、尹鍾晧、黒澤祐貴(アズビル)	
16:10		CFDによる熱力学的効果の予測高度化のためのキャビテーションモデル構築に向けた気泡力学解析	熱力学的効果を高度に予測可能なCFD 用キャビテーションモデルに必要な因子を気 泡力学解析により検討した。	◆竹崎維央、津田伸一、渡邉聡、高峯大輝 (九大)	
	_				

第3室: 3F 305会議室

(敬称略) ※一般発表者、◆若手講演者

(敬称略)) ※一般発表者、◆若手講演者 【1題の講演15分、質疑応答5分】					
時刻	講演 番号	題目	概要	講演者/共著者		
	【GS: タービン・翼列】					
	司会:柴田 貴範(岩手大)					
11:10			超高負荷軸流タービン直線翼列に翼面			
	C-01	二次流れ低減に関する実験的研究	フェンスを適用し、二次流れの抑制効果に	◆福沢勇太、櫻庭侑介、辻田星歩(法政大)		
		―翼面フェンスの適用効果―	ついて実験により調査した。			
11:30		遷音速軸流タービン直線翼列におけ	遷音速軸流タービン直線翼列内の流れ場			
	C-02	る後縁渦の非定常挙動と損失生成	における後縁渦の非定常挙動と損失生成	◆陳杰、馬嘉碩、辻田星歩(法政大)		
		機構	を数値解析により解明した。			
11:50		FRAP-OB法によるLP最終段静翼下	LP最終段静翼下流において粗大水滴の			
	C-03	流の粗大水滴挙動計測	後方散乱光を面計測し、粒径分布と速度	※笹尾泰洋、妹尾茂樹(三菱重工)		
			分布を解析値と比較した。			
12:10		低し ノルブ粉の声須翌別の空も炷	低レイノルズ数域におけるキャンバーとスタ			
	C-04	C-04 性 性 低レイノルズ数の直線翼列の空力特性	ガー角が異なる直線翼列の空力特性を解	◆小林創太、鈴木康方(日大)		
			析し実験値と比較検討			
	【GS : ファン・空力音①】					
	司会:	辻田 星歩(法政大)				
13:50			軸流ファンからの空力音を共鳴管を用い制			
10.00			御し、ファン動作条件が制御効果に及ぼす	◆斎藤悠登、河西悦輝、森蒼明、倉石孝、		
		制御	影響を実験的に評価した。	横山博史(豊橋技科大)		
14:10	・10 一重反転ファンの圧縮性流		二重反転ファンの圧縮性流体解析を通じ			
	C-06	二重反転ファンの圧縮性流体解析を	て翼間の干渉の様相および発生する空力	※倉石孝、横山博史(豊橋術科大)		
		用いた流れと音の分析	音の分析し、議論する。	(
14:30		軸流ファン周りの流れと発生音への上	プラズマアクチュエータによる軸流ファンの空			
				◆清原遥、倉石孝、横山博史(豊橋技科大)		
		による制御	験と解析を実施した。			
	【GS:	ファン・空力音②】				
	_	横山 博史(豊橋技科大)				
15:10		孔通過流れがある場合の吸音率に及	航空機エンジン騒音低減やガスタービン燃			
	C-08	ぼすテーパー付き多孔板の厚さの影	焼振動の防止などに使用される音響ライ	※濱川洋充、児玉大裕、村本仁、栗原央		
		響	ナーの性能向上を試みた。	流、大坪裕行(大分大)		
15:30		MEMSマイクロフォンによるドローン用ダ	異なる翼・ダクト構成における騒音レベルの			
	C-09	クティッドファンの騒音増大現象の調	変化量を、遠方およびダクト内の音響計測	◆竹中詩織、高木辰之介、柴田貴範(岩手 → 、		
		查	により評価した。	大)		
15:50			空力性能と排水性能の両立を狙い、トップ			
	C-10	空力性能と排水性能を両立する室	フロー型室外機に搭載される軸流ファンの	◆畠中貴翔、本間直彦、薮内宏典、彦根昂 (c.c. # 5 * * * * * * * * * * * * * * * * * *		
		外機用軸流ファンの開発	新設計手法を検討した。	仁(三菱電機)		

第4室:3F307会議室

(敬称略) ※一般発表者、◆若手講演者

(敬称略)	(1 題の講演15分、質疑応答5分) 【1 題の講演15分、質疑応答5分】					
時刻	講演 番号	題目	概要	講演者/共著者		
	【GS:ポンプ・軸受】					
	司会: 高峯 大輝(九大)					
9:40			ベンチュリ流量計を用いて非定常体積流量	※池田拓士(荏原製作所)、木村匠、大沼鉄		
	D-01	ベンチュリ流量計を用いたポンプの非	を計測し、ポンプの非定常応答特性の計	平(埼玉大)、安炳辰、能見基彦(荏原製作		
		定常応答特性の計測	測・評価を行った。	所)、姜東赫(埼玉大)		
10:00		N N N N N N N N N N N N N N N N N N N	遠心ポンプの効率改善を目指し、多目的	···/·		
	D-02	遠心ポンプ渦巻きケーシングの多目的	最適化システム用いた渦巻きケーシングの	◆岡大輔、坂口大作、(長崎大)		
		最適化	最適化設計を行った。			
10:20)+ > 6 CB >	Jグルーブを用いた軸スラスト荷重の制御お	10 11 st (1#17) 1 2 10 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
	D-03	遠心多段キャンドモーターポンプへの」	よびポンプ最終段からモーター部流路に関	松井純(横国大)、松本一成、◆渡辺政大		
		グルーブの適用と内部流路流れ	する数値解析	(タツノ)		
10:40		ウェット環境下におけるキャンドモータ	ウェット環境下におけるPV試験を行い、滑り	. THE CO. 1 = 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
	D-04	用滑り軸受の摺動面挙動に関する研	軸受の温度変化の測定●摺動面観察によ	◆西川卓見、金丸誠、古池仁暢(宮崎大)、		
		究	る分析を行なった。	江尻真一郎、大平康貴(日機装)		
	COS3	: ターボポンプの新規開発とそれ				
		イザー・司会:宮部 正洋(阪				
11:10			水中ポンプの低水位運転時の状態につい			
11.10		水中ポンプの低水位運転について	て実機及びCFDにて検証を行った。その結	※矢田元治(新菱工業)		
	D 03	NO OPENICIONE	果について説明を行う。			
11:30			低比速度磁気浮上遠心ポンプの中間羽			
11.50	D-06	低比速度磁気浮上遠心ポンプの羽		◆井河巧侑喜、奥進之助、重光亨(徳大)		
	D 00	根形状がポンプ性能に及ぼす影響	す影響について報告する。			
11:50		□ 高効率片吸込渦巻ポンプ「スーパーエ	CAE最適化と製造技術により高効率化し	※本崎和彦、濵野隼輔、羽野洋平(酉島製		
11.50	D-07	コポンプ」の開発	た汎用ポンプの開発事例を紹介する。	作所)		
12:10			二平板により遠心ポンプのディフューザを模	11777		
12.10	D-08	平行二平板間の旋回失速に関する	擬し、可視化実験を行うことで旋回失速発	木村信哉、※井上暁良(帝国雷機)		
	2 00	研究	生メカニズムを解明する。	(1000)		
	IOS3	: ターボポンプの新規開発とそれ				
		イザー:宮部 正洋(阪工大)	司会:内海 政春(室蘭工	· *)		
13:50			FFBを用いて、ロケットエンジン用インデュー	※根岸秀世、山本啓太(JAXA)、福田太郎		
13.30	D-09	テーションLES解析の基礎検討	けのキャビテーションLES解析を試行した。	(DSE)、島垣満、川崎聡(JAXA)		
14:10			不安定現象を抑制するインデューサとケー	(DOL)、田坦河、川崎県(JAAA)		
14.10		体ロケットインデューサのキャビテーショ	シングそれぞれの動特性パラメータMKを	◆田村浩紀、吉野剛瑠(東北大)、川崎聡		
	D 10	ン動特性解析	CFDを用いて調査した。	(JAXA)、伊賀由佳(東北大)		
14:30			インデューサのケーシング圧力変動の1.9ω			
11.50	D-11	液体ロケットインデューサにおける1.9ω	成分について、多点圧力計測手法を用い	◆土田流輝、池田和樹、奈倉悠人(東北		
		の振動現象に関する多点圧力計測	て解明を試みた。	大)、川崎聡(JAXA)、伊賀由佳(東北大)		
	[053	: ターボポンプの新規開発とそれを				
	オーガナイザー:宮部 正洋(阪工大) 司会:田中 禎一(熊本高専)					
15:10			ターボポンプインペラの静特性に対するCFD	(T)		
13.10	D-12	ターボポンプインペラの1次元フローネッ	解析を基にした一次元モデル構築の試みに	◆阪井健人(早大)、森正明、本江幹朗(サイ		
	D-12	トワークモデルの構築	のいて報告する。	バネットシステム)、宮川和芳(早大)		
15:30		Ni-Ti系合金を用いたワイヤーメッシュ	ターボ機械の軸振動を抑制するダンパにつ	◆竹野剛史、岸本健吾、高野智之(室工		
15.50		ダンパの相状態を考慮したCo添加が	いて、用いる材料とダンパ特性の関係につ	▼ 门封剛丈、		
	J 13	減衰特性に及ぼす影響	いて実験的に調査した。	海政春(室工大)		
15:50			砂型3Dプリンター導入による斜流羽根の	/克坎日(工工八)		
13.30	D-14	3D砂型積層造型による斜流羽根の	鋳造プロセス改善と品質向上、実用化課	※越本充(鶴見製作所)		
	D 17	鋳造および性能評	題と活用事例を紹介。	ハルボナンロ(四回ノロ4×1円/1)		
16:10			溶接熱による残留応力を設計段階で適切			
10.10	D-15	薄肉溶接構造品の残留応力の解析	に予測するため、FEM解析を用いた計算	※篠塚泰(電業社)		
	2 13	と測定	手法の検証を実施した。			
		<u> </u>	コルプス単で入りむした。			

第5室: 3F 308会議室

(敬称略) ※一般発表者、◆若手講演者

(敏称略)	※一加	贸発表者、◆右手講演者		【1題の講演15分、質疑応答5分】
時刻	講演 番号	題目	概要	講演者/共著者
		: 水力発電の可能性①】 トイザー : 宮川 和芳(早大)	司会:米澤 宏一(電中研)	
9:40	E-01	フランシス水車の低出力における水ス ラスト変動に対する実験的考察	フランシス水車の低負荷で発生する水スラ ストの変動について、実験で水圧脈動と渦 の挙動を元に評価する。	◆小渕稜明、石原知明、田村悠太(日立三 菱水力)
10:00	E-02	フランシス水車 起動時間予測の省力 化手法	起動過程の検討で必要な範囲の模型試験特性の一般化による、フランシス水車の起動時間の予測方法を紹介する。	※野口太郎、向井健朗、島諒介、中薗昌 彦、手塚光太郎(東芝ESS)
10:20	E-03	強化学習を用いたフランシス水車の起動モード最適化	現地試験結果と強化学習を活用して、高 速で安全なフランシス水車の起動モード (昇速過程)の最適化を行った。	※向井健朗、遠藤翔太、中薗昌彦、手塚光 太郎(東芝ESS)
10:40	E-04	フランシス水車ガイドベーン部における 土砂侵食の数値解析	フランシス水車ガイドベーン周辺の流れについて、粒子の流動と侵食の粒子径による影響を調査した。	米澤宏一(電中研)、◆平山輝斗、鈴木大 祐、杉山和靖(阪大)
	(OS4	: 水力発電の可能性②】		
	オーガナ	トイザ−:宮川 和芳(早大)	司会:手塚 光太郎 (東芝E	SS)
11:10	E-05	小水力発電用フランシス水車向けランナの異物閉塞を抑制する形状の開発と金属積層造形を用いたランナー体製造法の実証	小型フランシス水車ランナの異物閉塞を抑制した形状を開発し、金属積層造形を用いて実機に適用した。	◆大貝直輝,吉田凱,荒井友也,村上颯 聖(早大),川田顕,松久光儀,山岡耕一 (関西電力),宮川和芳(早大)
11:30	E-06	スプリッタ翼の最適化によるフランシス 水車の性能向上	フランシス水車ランナのスプリッタ翼の形状に よる性能変化を調査して、最適な形状を 作成した。	◆吉田凱、大貝直樹(早大)、川田顕、松久 光儀、山岡耕一(関西電力)、宮川和芳(早 大)
11:50	E-07	スプリッター翼の有無による水車ランナ の異物通過性評価	CFD-DEMを用いて水車ランナにおけるスプ リッター翼の有無による異物通過性の比較 を行った。	◆荒井友也、大貝直輝、吉田凱(早大)、川田顕、松久光儀、山岡耕一(関西電力)、宮川和芳(早大)
12:10	E-08	積層造形Ti-6Al-4V合金の耐キャビ テーション壊食特性の評価	本研究は、積層造形チタン合金の壊食試験に基づき、積層方向の異方性が耐壊食特性に及ぼす影響を評価する。	◆村上颯聖(早大)、川田顕、松久光儀、山岡耕一(関西電力)、宮川和芳(早大)
	COS4	: 水力発電の可能性③】		
	オーガナ	トイザー:宮川 和芳(早大)	司会: 奥出 邦夫(関西電力)
13:50	E-09	クロスフロー水車の流量調整機構の 検討と水車特性の評価	クロスフロー水車の流量調整機構及びランナ形状が水車性能に与える影響を評価した。	◆鈴野健、飯尾昭一郎(信大)
14:10	E-10	ンナ外周ブレード角度と水車性能の 関係	ぼす影響を模型試験と数値流体解析を用いて明らかにした。	大)、稲垣守人(JSE)
14:30	E-11		1射の縦軸マイクロペルトン水車の可変速	◆村松史羅、片桐玄(信大)、末次恵久、野田寺谷(アイシン)、飯屋四一郎(信士)
14:50	E-12	の特性評価 小流量のインライン式小型ハイドロター ビンの高効率化に向けた基礎研究	運転時の水車特性を評価した。 遠心タービンの数値解析結果と発電試験 結果を示し、性能と漏れ流れの関係性につ いても報告を行う。	田幸裕(アイシン)、飯尾昭一郎(信大) ◆瀬口陸、細谷拓司、重光亨(徳大)